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Abstract
Methods have been developed to facilitate the data analysis of multiple
two-dimensional powder diffraction images. These include, among others,
automatic detection and calibration of Debye–Scherrer ellipses using pattern
recognition techniques, and signal filtering employing established statistical
procedures like fractile statistics.

All algorithms are implemented in the freely available program package
Powder3D developed for the evaluation and graphical presentation of large
powder diffraction data sets.

As a case study, we report the pressure dependence of the crystal structure
of iron antimony oxide FeSb2O4 (p � 21 GPa, T = 298 K) using high-
resolution angle dispersive x-ray powder diffraction. FeSb2O4 shows two
phase transitions in the measured pressure range. The crystal structures of
all modifications consist of frameworks of Fe2+O6 octahedra and irregular
Sb3+O4 polyhedra. At ambient conditions, FeSb2O4 crystallizes in space group
P42/mbc (phase I). Between p = 3.2 GPa and 4.1 GPa it exhibits a displacive
second order phase transition to a structure of space group P21/c (phase II,
a = 5.7792(4) Å, b = 8.3134(9) Å, c = 8.4545(11) Å, β = 91.879(10)◦, at
p = 4.2 GPa). A second phase transition occurs between p = 6.4 GPa and
7.4 GPa to a structure of space group P42/m (phase III, a = 7.8498(4) Å,
c = 5.7452(5) Å, at p = 10.5 GPa). A nonlinear compression behaviour over
the entire pressure range is observed, which can be described by three Vinet
equations in the ranges from p = 0.52 GPa to p = 3.12 GPa, p = 4.2 GPa to
p = 6.3 GPa and from p = 7.5 GPa to p = 19.8 GPa. The extrapolated bulk
moduli of the high-pressure phases were determined to K0 = 49(2) GPa for
phase I, K0 = 27(3) GPa for phase II and K0 = 45(2) GPa for phase III. The
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crystal structures of all phases are refined against x-ray powder data measured
at several pressures between p = 0.52 GPa, and 10.5 GPa.

(Some figures in this article are in colour only in the electronic version)

M Supplementary data files are available from stacks.iop.org/JPhysCM/18/S1021

1. Introduction

With the general availability of high-intensity parallel synchrotron radiation, the use of two-
dimensional detectors like CCD-detectors or online image plate readers for fast high-resolution
data acquisition is enjoying a growing popularity. As a consequence, the field of x-ray
powder diffraction has experienced a renaissance. For the first time it is now possible to
record the entire Debye–Scherrer rings up to high angular range with high angular resolution
within a few seconds or even less. The field of applications is vast, with current experiments
including texture analysis (Wenk and Grigull 2003) and the dependence of in situ powder
diffraction measurements on pressure (Hanfland et al 1999), temperature (Norby 1997),
chemical composition (Meneghini et al 2001), electric and magnetic fields (Knapp et al 2004)
or external strains (Poulsen et al 2005).

The experimentalist is faced with two major challenges. First, large area detectors produce
large numbers of two-dimensional images which need to be reproducibly reduced to one-
dimensional powder patterns. Second, the sets of hundreds or even thousands of powder
patterns need to be evaluated and presented graphically.

It is interesting to note that for both tasks only very few generally available programs exist.
These are keyed toward single powder patterns involving extensive manual interaction. This
approach is unsuitable for mass data analysis: not only is the manual workload exorbitant but
the induced subjectivity hinders reproducible results.

The key to solving the first problem lies in the reliable extraction of a powder diffraction
pattern unaffected by grain size effects, detector aberrations, and scattering from other sources
like reaction cells, diamond anvils, gaskets, etc. Almost all signals from a two-dimensional
image can be reduced to simple geometric figures like points, lines and ellipses, calling for
the application of modern pattern recognition techniques (Fisker et al 1998, Theodoridis and
Koutroumbas 1999, Paulus and Hornegger 1995). As to the representation and evaluation of
the integrated powder patterns, a high-level graphically powerful programming language offers
the basis for an efficient solution. We decided on the Interactive Data Language IDL (RSI 2005
current version 6.2) to develop a general program for automatic data reduction and evaluation
of two-dimensional powder diffraction data called Powder3D. Some of the aspects necessary
to solve the problems encountered during the investigation of the crystal structure of FeSb2O4

at high pressure are described in this paper.
FeSb2O4, also known as the mineral schafarzikite (Krenner 1921), belongs to a group of

compounds crystallizing in space group P42/mbc with the general formula AB2O4: A = Pb,
Cu, Sn, Ni, Zn, Mn, Fe; B = Pb, As, Sb, where B represents ions with a stereochemically
active lone electron pair. Generally they are regarded as pseudo-ligands that are able to replace
one or more of the regular ligands in a given coordination sphere leading to irregular polyhedra
of a low coordination number. The resulting stereochemical implications have been discussed
in depth (Gillespie 1967a, 1967b, Gillespie and Robinson 1996a, 1996b).

The crystal structure of schafarzikite is characterized by the presence of edge-sharing
iron octahedra connected with corner-sharing antimony tetrahedra leading to open channels
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Table 1. Structural parameters of the ambient and low pressure structure of Schafarzikite which
crystallizes in the space group P42/mbc. The parameters were refined to data collected at
p = 0.5 GPa (a = 8.5758(1) Å, c = 5.8983(1) Å).

Atom:Wyck. Fe:4d Sb:8h O:8g O:8h

x/a 0 0.175(1) 0.676(1) 0.099(1)
y/b 1/2 0.164(1) 1.176(1) 0.651(1)
z/c 1/4 0 1/4 0

containing the lone pairs (Fischer and Pertlik 1975). The open channel structure (see table 1
for the ambient and low pressure structural parameters) and the high polarizability of the cations
exhibiting the ’lone-pair’ make it highly susceptible to pressure induced phase transitions. A
previous high-pressure investigation of the related compound Pb4+Pb2+

2 O4 (Dinnebier et al
2003) showed two phase transitions towards two phases of higher density at pressures of
p = 0.11–0.3 GPa and p = 5.54–6.6 GPa respectively, where the lone pair of the latter
phase almost vanished tending towards an s-state character. While minium also shows several
phase transitions upon cooling (Gavarri et al 1978), no phase transitions of schafarzikite on
cooling to T = 2 K have been observed (Gonzalo et al 1966, Chater et al 1985). In this
work, we have investigated the pressure dependence of the crystal structure of schafarzikite
up to a pressure of p = 19.8 GPa. For this purpose, in situ x-ray powder diffraction
measurements were performed at room temperature and elevated pressures using a diamond-
anvil cell (DAC).

2. Experimental details

2.1. Synthesis and x-ray diffraction measurements

FeSb2O4 was prepared according to procedures described in the literature (Chater et al 1985).
For the x-ray powder diffraction experiments, a hand-ground sample of schafarzikite

was loaded in a membrane driven diamond-anvil cell (DAC) (Letoullec et al 1988), using
nitrogen (cryogenic loading) as pressure medium. The DAC had 300 µm culet and 125 µm
hole diameters. The pressure was determined by the ruby luminescence method using the
wavelength shift calibration of Mao et al (1986). High-pressure x-ray powder diffraction data
were collected at room temperature at beamline ID9 of the European Synchrotron Radiation
Facility (ESRF) using an experimental configuration following that described by Schulze et al
(1998). Monochromatic radiation for the high-pressure experiment was selected at 30.0 keV
(0.413 25 Å). The beam-size was 30 µm × 30 µm. Diffracted intensities were recorded with
a Marresearch Mar345 online image plate system. A set of 22 images at selected pressures
between p = 0.56 GPa and p = 19.8 GPa was recorded. Three of the 22 images were taken
during the decompression of the sample. An exposure time of 120 s was chosen.

2.2. Data reduction and filtering

Information required for powder diffraction analysis is contained in Debye–Scherrer cones.
These are projected as ellipses onto two-dimensional detectors (He 2003). A precise calibration
of the experiment necessitates the exact definition of these cones. Currently, solving this task
is a rather cumbersome ordeal. We have thus developed a robust method for the automatic
detection and characterization of ellipses using a modified Hough transformation (Hough
1962). The method involves no mathematical complexity and exhibits excellent overall
efficiency.
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Figure 1. Centre detection grid.

2.3. Ellipse detection

An ellipse can be described by five parameters, the major axis a, minor axis b, centre
coordinates x0 and y0 and angle of orientation α. Computing all five parameters simultaneously
using Hough transformation is computationally very expensive (Bennett et al 1999), as a huge
quantized five-dimensional parameter space has to created. In practice the transformation scales
to the number of dimensions in parameter space. In order to reduce the size of the required
parameter space, the complete process of ellipse detection is decomposed into different steps.
Hough transformation is used for the calculation of the parameter b alone. Hence we require
only a one-dimensional parameter space.

2.4. Reduction of resolution

The spatial resolution of digitized powder diffraction images is typically in the order of a
few thousand pixels squared. Manipulation of such an amount of data is impractical. The
computational complexity of an image of size N × N is (N × N)4. To improve the execution
speed the image resolution is reduced by a factor of five.

2.5. Approximate centre determination

Many methods have been used for the determination of the centre of an ellipse (Lei and Wong
1999, Dammer et al 1997). Most of the methods suffer either a lack of accuracy or inefficient
memory usage. We propose a generic two-step approach to determine the centre coordinates
of an ellipse. In the first step we find the approximate centre by using the intensity patterns of
vertical and horizontal grids (figure 1) drawn on the image.

All pixel intensities along a grid are copied to an array (figure 2). The mirror plane of
this distribution is detected by finding the absolute difference of the mirrored intensities. This
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Figure 2. Profile along a grid line.

Figure 3. Difference histogram of profile.

absolute difference is calculated for each possible mirror plane position and copied to another
array (figure 3). The lowest point in this difference plot is the position of maximum peak
overlap and represents the approximate mirror plane. Each grid line results in one such point.

Two lines, one for the points from the vertical grids and the other from the horizontal grid,
are fitted, using the robust least absolute deviation (Press et al 2002) method. The approximate
centre of the ellipse is the point of intersection. This algorithm for centre determination is both
robust against the outliers in the image and against the position of the ellipses with respect to
the image centre. This method requires the centre of the ellipses to be on the image.

2.6. Masking of high-intensity spikes

High-intensity pixels have to be masked to enhance the accuracy of the ellipse parameter
determination. Masking is done by capping the intensities to six times the median of the entire
image.
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Figure 4. Binary images without (left) and with (right) initial background subtraction.

2.7. Background reduction and thresholding

Thresholding is an important step in preparing an image for a Hough transformation and the
importance of a preceding background reduction will be shown. Diffraction images often suffer
from a diffuse background resulting from the scattering of x-rays by air molecules. Hence the
background intensity is high near the incident beam and decreases towards higher 2� angles.
Subtracting the background for such images with nonuniform intensity distribution is crucial.

The entire image is divided into broad circular segments whose average intensities decrease
toward higher radii. Background reduction is accomplished by subtracting twice the median of
the pixel intensities within a segment from those same pixel intensities.

Following the background subtraction, the image is converted into a binary image. This
conversion is beneficial to an efficient Hough transformation, as the number of transformed
pixels is reduced and the space required for their storage is substantially smaller (Fung et al
1996). We set the pixels of high intensity to 1 and the remaining to 0 by applying a threshold
of 10% of the maximum intensity. The result and the importance of an initial background
reduction is visible in figure 4. In the further process of ellipse detection, only pixels with the
value of 1 are subject to analysis.

2.8. Range of the major and minor axes

To restrict the search area for the major and minor axes of the ellipse we find the approximate
range of a. The range of a and b is determined for each ellipse by calculating the radial
distances. This is done only for a thin wedge of the image. For better averaging, 16 wedges are
drawn with an opening angle of 2.5◦. An opening angle of 2.5◦ seemed a good compromise
between a local probe and a statistically acceptable sample.

After computing 16 radii of all the ellipses, the entire array of distances is converted into
a histogram, containing the density of distances falling within certain intervals (figure 5). An
algorithm that scans through the histogram identifies the ranges of the filled bins. These ranges,
which correspond to the minimum and maximum distances to the centre, are initial estimates
of the minor and major axes.

2.9. Determination of major axis and orientation

A routine based on Chellali and Fremont (2003) is used for the final steps. We assume a pair
of pixels to be the vertices of the major axis of the ellipse. Their distance to one another is
calculated, and should it lie within the range estimated previously, the midpoint is calculated.
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Figure 5. Radial distances of ellipses.

Figure 6. The accumulator array.

Should this again agree within a certain tolerance to the initial centre, then it is stored. The
corresponding orientation of the ellipse is then calculated. Finally the maximum distance is
taken to be the most probable value of the major axis of the ellipse. The average of all stored
orientations is saved as the orientation estimate.

2.10. Determination of minor axis using Hough transformation

Hough transformation is a standard tool in image analysis and is widely applied to detect
geometrical shapes. This Hough space spans all possible parameters that could describe
the required shape. It is clear that the size of this space depends strongly on the number
of parameters, which translate to Hough space dimensions, as well as the range of these
parameters, which correspond to the lengths of the dimensions. The transformation is
implemented by quantizing the Hough space into finite intervals. After processing all the
pixels of the reduced image, the local peaks in the parameter space correspond (figure 6) to
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the parameters of the most successful shapes. We have reduced the size of the transformation
from five dimensions down to one by previously locating estimates for the centre, major axis
and rotation angle. All pixels are checked for validity with regard to these estimates and the
parameter space is incremented for all the pixels satisfying the constraints. After processing
all the points in the image, the local maxima of the parameter space is the minor axis length
(figure 6). As we use the Hough transformation to determine the minor axis only, a mere one-
dimensional parameter space is required. This is beneficial to both computing and memory
costs.

In the process of ellipse detection we determine the parameters of the innermost ellipse
first and then proceed outwards. The reason is that the x-ray diffraction intensities have high
gradients with the maximum near the centre of diffraction pattern. Outer ellipses thus have
a lower signal density than inner ellipses. This results in better statistics for inner ellipses.
After detecting an ellipse, its pixels are removed from the image, and the rest of the ellipses
are detected iteratively. As a result the computational time for b decreases with every detected
ellipse.

2.11. Signal filtering

Many powder diffraction experiments impede the realization of ideal circumstances, namely
the contribution of a very large number of evenly sized and randomly oriented crystals to the
diffraction pattern. This would in turn lead to an ideal normal intensity distribution. Despite
the great experimental effort expended to ensure good quality data, high-pressure powder
diffraction traditionally suffers from weaker signal quality than other in situ experiments.
Sample rotation is confined to small angular rocking due to the DAC’s opening angle, the
wish to limit the effect of gasket shadowing and the avoidance of diamond reflections. This can
lead to an extremely ‘spotty’ diffraction cone, the result of relatively few crystallites passing
through a diffraction position, an effect that is enhanced by highly parallel synchrotron beams.
To remedy this effect the intensity of the entire diffraction cone is integrated to a peak. This
method generally results in powder patterns with reliable intensities.

One effect that is however not alleviated by a mere integration is that of highly dispersed
intensities within the diffraction cone. These result from large grain size differences within
the sample. Strong peaks resulting from larger grains lie within a ring of moderate intensities
generated by small crystallites (figure 7). In most cases the number of large grains tends to
be a couple of orders of magnitude lower than the number of small grains. On account of the
small number of large crystallites they inevitably fail to ensure a ‘statistical’ distribution. Due
to their high intensity, they have a great effect on the integrated pattern, falsifying the intensities
considerably. All attempts to fit a pseudo-Voigt function to the peaks produced by an unfiltered
integration failed. It should be mentioned that pseudo-single-crystal data can be extracted from
such high intensity peaks (Schmidt et al 2003), this promising method lies outside the scope of
the work presented here.

The accepted manner of filtering such data is to mask the high-intensity peaks manually
using software such as Fit2D (Hammersley et al 1996). Manual masking is however time
consuming, lacks reproducibility and relies too heavily on visual inspection to produce reliable
results. Two exceptions known to the authors are Two2One (Vogel et al 2002) which is a
filter based on Poisson statistics, and Datasqueeze (Heiney 2005) which contains an averaging
filter aimed at removing bad pixels. These methods failed on our samples as our experimental
distributions deviate strongly from the well known statistical models. For the analysis of
our data we devised a two-dimensional signal filtering algorithm which should be generally
applicable.
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Figure 7. Rendered image plate data using a false colour texture map. Intensity is represented by
the elevation along the z-axis. In addition the false colours have been scaled to the intensity. The
scale has been adjusted to highlight the weak intensities.

Figure 8. An excerpt of the azimuthal intensity distribution of the (004) reflection of FeSb2O4 at
p = 0.56 GPa. Red diamonds represent data masked using the fractile threshold of 5%.

2.12. Fractile masking

The general goal of signal filtering is the separation of the required signal from artefacts or
noise. We implement a robust type of band pass filter based on fractile statistics. Unlike
model based filters, the fractile method is insensitive to strong statistical aberrations and was
successfully applied to our data. An arbitrary fraction of the highest intensities collected for
a 2� range is masked. In our case, by selecting 5% of the highest peaks, most of the pixels
contributing to the high-intensity data are masked (figure 8). This selection was motivated by
inspection of the integrated pattern. No further reduction in the integrated intensities could be
observed using higher exclusion limits, thus the value of 5% was chosen. Mask dilation applied
afterward suffices to mask the tails of the peaks (figure 9), leading to a significant improvement
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Figure 9. Same as figure 8. In addition the mask is dilated by two pixels.

Figure 10. Simulated Guinier plot showing the progression of the powder pattern over the measured
pressure range.

in intensity distribution of the signal. The diffraction intensities originating from the finely
crystalline matrix are in effect the base line displayed as black diamonds in figures 8 and 9.

For the application of such intensity sensitive filtering procedures it is of ultimate
importance to have previously applied all possible two-dimensional corrections affecting the
intensity. Of greatest importance are those corrections which are a function of the azimuth.
These include polarization and Lorentz corrections, for which the experimental geometry has to
be determined. As the filter is applied sequentially to a small 2� range, the effect of corrections
which are only a function of 2� have little impact. It should be further noted that for a correct
error estimation (Chall et al 2000) a precise intensity distribution is essential. This can only be
achieved by prior two-dimensional corrections.

2.13. Crystal structure determination and refinement

Following the successful filtering and integration of the two-dimensional images to
conventional powder diffraction patterns, the dependence of the scattering profile of FeSb2O4

on the pressure (figure 10) gives evidence for a second order phase transition followed by a
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Figure 11. Scattered x-ray intensity for the low-pressure phase of FeSb2O4 at p = 0.52 GPa as
a function of diffraction angle 2�. Shown are the observed pattern (crosses), the best Rietveld fit
(thick black line), the difference curve (thin black line) and the reflection markers (vertical bars).
The wavelength was 0.413 25 Å.

first order phase transition. The phase with tetragonal symmetry (P42/mbc) (phase I) which
is stable at ambient conditions is retained up to at least p = 2.2 GPa. A transition into a phase
with monoclinic symmetry (P21/c) (phase II) is observed to occur between p = 2.2 GPa and
3.1 GPa which is stable to at least p = 8.3 GPa. Between p = 8.3 GPa and p = 9.5 GPa
a second phase transition occurs to another tetragonal phase (P42/m) (phase III) which stays
stable until at least p = 19.8 GPa (figure 11). For all data sets, lattice parameters as a function
of pressure were obtained by Le Bail type fits using the programmes FULLPROF (Rodrı́guez-
Carvajal 2001) and GSAS (Larson and Von Dreele 1994), and are available as supplementary
material (see stacks.iop.org/JPhysCM/18/S1021).

The background was modelled using the program Powder3D (figure 11) (Hinrichsen et al
2005). The peak-profile was described by a pseudo-Voigt function. The phenomenological
microstrain model of Stephens (Stephens 1999) as implemented in GSAS was used to model
the anisotropy of the FWHM. Four parameters were refined for the tetragonal phase. The
quality of the powder patterns of all phases was sufficient to extract lattice parameters and to
verify the crystal structures via Rietveld refinement (tables 1–4).

The powder patterns of phases II and III contained sufficiently resolved diffraction peaks
to allow for ab initio crystal structure determination as well as for Rietveld refinement. The
direct method program EXPO (Altomare et al 2005) was used to determine the positions of
the iron and antimony atoms. Subsequent Rietveld refinements in combination with difference-
Fourier analyses then revealed the positions of the oxygen atoms in the asymmetric unit. For
the Rietveld refinements using the program GSAS, the lattice and reflection profile parameters
were first kept at the values as obtained from the Le Bail fits. Slack soft constraints for the
four Fe2+–O bond lengths of 2.1(1) Å were used to stabilize the refinements. The atomic

http://stacks.iop.org/JPhysCM/18/S1021
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Table 2. Details of the refinement phases I, II and III of FeSb2O4.

Pressure (GPa) 0.5 4.2 10.5

Space group P42/mbc P21/c P42/m
ρcalc (g cm−3) 5.564 5.945 6.818
Formula weight 363.37 363.37 363.37
Temperature (K) 290 290 290
Rp (%)a 2.0 1.7 1.9
Rwp (%)a 2.8 2.5 3.1
Rexp (%)a 5.6 5.7 5.8
RF2 (%)a 29.9 14.7 17.4
No. of reflections 133 187 212
No. of variables 21 43 30
No. of refined atoms 4 7 6
Wavelength (Å) 0.413 251 0.413 251 0.413 251
2� range (deg), counting time 2.0–24.46, 120 2.0–24.46, 120 2.0–24.46, 120
Step size (deg 2�) (after rebinning) 0.01 0.01 0.01

a Rp = ∑ |IO − IC |/∑
IO , Rwp =

√∑
w(IO − IC )2/

∑
w I 2

O , Rexp =
√

(n − p)/
∑

w I 2
O ,

RF2 = ∑ |F2
O − F2

C |/∑
F2

O where IO = observed intensity, IC = calculated intensity,
FO = observed structure factor, FC = calculated structure factor, w = weighting per data point,
n = number of data points, p = number of parameters.

Table 3. The Vinet equation of state for the three phases of FeSb2O4 and related compounds.

Vinet EoS V0 (Å
3
) K0 (GPa) K ′

0 Rw (%)

FeSb2O4 (phase I) 438(1) 49(2) 4 (fix) 2.21
FeSb2O4 (phase II) 459(6) 27(3) 4 (fix) 1.12
FeSb2O4 (phase III) 425(2) 45(2) 4 (fix) 2.28
FeSb2O4 50a

Pb3O4 (phase II) 511(1) 20.8(4)b 4 (fix) 3.65
Pb3O4 (phase III) 222(2) 98(3)b 4 (fix) 4.25
Pb3O4 67(16)c

SnSb2O4 49(8)c

NiSb2O4 57a, 65(5)d

ZnSb2O4 52(9)c

MnSb2O4 55a

a Gavarri and Chater (1989) (calculated values).
b Dinnebier et al (2003).
c Gavarri (1982) (calculated values).
d Chater et al (1987) (measured at T = 63 and 240 K).

displacement parameters for the oxygen had to be restrained to be equal in the monoclinic
phase, to hinder some parameters having physically meaningless negative values. For the same
reason one oxygen atom in the low pressure phase and all oxygen atoms in the high pressure
phase had to be refined with fixed isotropic atomic displacement parameters.

2.14. Equation of state

Lattice parameters as a function of pressure were extracted from each diffraction pattern. The
derived volume/pressure dependence is represented by the equation of state (EoS). An EoS is
typically fitted to a model based either on series expansion of Eulerian strain (Birch–Murnaghan
EoS, Murnaghan 1944) or on cohesive energies in a condensed system (Vinet EoS, Vinet et al
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Table 4. Wyckoff splitting for the phase transitions P42/mbc → P21/c → P42/m.

Atom:Wyck. Fe:4d Sb:8h O:8g O:8h
Site symm. ..2 m.. 2.22 m..
x/a 0 0.175(1) 0.676(1) 0.099(1)
y/b 1/2 0.164(1) 1.176(1) 0.651(1)
z/c 1/4 0 1/4 0

ui (Å
2
) 0.018(1) 0.004(2) 0.096(11) 0.001

↓ ↓ ↓ ↓ ↓ ↓ ↓
Atom:Wyck. Fe:4e Sb:4e Sb:4e O:4e O:4e O:4e O:4e
Site symm. 1 1 1 1 1 1 1
x/a 0.224(3) −0.010(2) 0.498(2) 0.223(6) 0.269(6) 0.017(6) 0.500(4)
y/b 0.0000(2) 0.172(2) 0.842(2) 0.697(5) 0.333(5) 0.094(2) 0.352(4)
z/c 0.496(3) 0.158(2) 0.181(2) 0.163(4) 0.804(5) 0.680(3) 0.088(2)

ui (Å
2
) 0.003(5) 0.022(6) 0.050(4) 0.06(1) 0.06(1) 0.06(1) 0.06(1)

↓ ↓ ↓ ↓ ↓ ↓ ↓
Atom:Wyck. Fe:4i Sb:4j Sb:4j O:8k O:4j O:4j
Site symm. 2.. m.. m.. m.. m.. 1
x/a 0 −0.164(2) 0.328(2) 0.681(5) 0.113(8) 0.483(8)
y/b 1/2 0.154(3) 0.653(3) 1.132(5) 0.636(9) 0.246(8)
z/c 0.222(5) 0 0 0.220(8) 0 0

ui (Å
2
) 0.007(6) 0.016(8) 0.028(5) 0.001 0.001 0.001

1986). The programme EOSFIT 5.2 (Angel 2002) was used to fit the Vinet EoS defined as

P = 3K0
(1 − fv)

f 2
v

exp

(
3

2

(
K ′

0 − 1
)
(1 − fv)

)

,

where

fv =
(

V

V0

)1/3

with volume at zero pressure V0, the bulk modulus K0, and its pressure derivative at zero
pressure K ′

0. In all calculations K ′
0 was selected as 4. The experimentally obtained values

for the bulk modulus K0 presented in table 3 show good agreement with calculated values
for the low-pressure tetragonal phase I, being identical within experimental error. Higher
compressibility expressed by the lower bulk modulus for the intermediate phase II of FeSb2O4

is a feature shared by the intermediate phase II of Pb3O4. The increase in compressibility of
the monoclinic phase is roughly by a factor of two. No difference within experimental error is
registered for the EoS between the low-pressure and high-pressure phases. It should be noted
that the EoS of the first and second phases have been determined using only four and three data
points respectively. Thus the interpretation of these values is somewhat speculative.

An anisotropy in the change of lattice parameters induced by pressure has also been
observed in the high-pressure study of Pb3O4. The monoclinic phase II of FeSb2O4 shows
a strong distortion of the lattice. The highest observed discontinuities of the lattice constants
relate however to the re-entry of the tetragonal symmetry above p = 7.4 GPa (figures 12
and 13). A moderate compression of the c-axis until this pressure can be noted. For the
remaining range up to p = 19.8 GPa the c-axis remains virtually unchanged. The entire
compression in this range takes place within the ab-plane and is directly related to the
constriction of the open channels containing the lone electron pairs.
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Figure 12. Dependence of the lattice parameters of FeSb2O4 on pressure in the range p = 0–
19.8 GPa.
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Figure 13. Dependence of the volume of FeSb2O4 on pressure in the range of p = 0–19.8 GPa.
Smooth solid lines correspond to the least square fits of the Vinet equations of state.

2.15. Symmetry relations

Translationengleiche group–subgroup relations can be found for all phases. They are
P42/mbc → t4 → P21/c → t8 → P42/m and P42/mbc → t2 → P42/m. The initial
path leads over Pbam, a space group type known from the high-pressure phase of Pb3O4 but
not observed for FeSb2O4. Four possible paths lead back from P21/c to P42/m as can be seen
in figure 14.

Symmetrical considerations would suggest the orthorhombic space group Pbam to bridge
the higher and lower space groups (figure 14). The space group type Pbam is a known low-
temperature/high-pressure space group type for minium (Pb3O4). A direct transition path
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Figure 14. Group–subgroup tree of the observed phases. Grey lines are possible transition paths.

Figure 15. Low-pressure tetragonal FeSb2O4 (phase I) viewed down the c-axis, grey spheres within
the polyhedra represent Fe, large light-grey spheres Sb.

from the ambient pressure space group P42/mbc to the high-pressure space group P42/m
is symmetrically plausible as P42/m is a non-isomorphic maximal subgroup of P42/mbc.
The second transformation from P21/c to P42/m would require two further space groups
(figure 14).

The structure of FeSb2O4 (figure 15) is dominated by infinite chains of edge-linked
distorted Fe2+O6 octahedra. The chains project down the c-axis and lie centred on the a- and
b-axes akin to the orientation of the TiO6 octahedra in the rutile structure. All Sb3+ ions are
located in the planes spanned by the shared edges of neighbouring octahedral chains. Their
polyhedra link the [FeO6]1∞ chains. Sb is coordinated by three O atoms, two representing
the apex of neighbouring FeO6 octahedra from one chain and one equatorial oxygen from a
neighbouring chain. This results in a slightly irregular SbO3 pyramid with oxygen forming
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the base and the lone pair electrons representing the apex. Four of these pairs point inward
to the channel, resulting in a large unoccupied space. Thus the channels are lined by trigonal
pyramids of SbO3, the closest Sb–Sb distance being 3.53 Å.

In the monoclinic phase II all atoms are on the general 4e position (table 4). The
special positions and the high tetragonal symmetry are recovered at higher pressures. The
mechanism of the first phase transition can be interpreted as an initial continuous shearing
toward the monoclinic symmetry. The shearing presents itself in the growing monoclinic angle,
corresponding to the angle of the c-axis to the ab-plane in the tetragonal phases I and III. The
distortion of the iron octahedra increases with pressure. All changes are however continuous,
characteristic of a second order phase transition. The second transition is different. Sharp
discontinuities of the lattice constants speak for a first order phase transition. The iron octahedra
remain distorted; however, the orientation has changed substantially compared to that of phases
I and II.

The change in the antimony environment is substantial for the second phase transition.
Here one of the symmetry-independent antimony atoms takes on a fourfold coordination in
contrast to the dominant threefold coordination for the remaining phases. It should be kept in
mind that the refinement of the atomic position of weak x-ray scatterers such as oxygen in the
vicinity of heavy atoms such as antimony, which are strong scatterers, is inherently difficult.

3. Conclusion

The general applicability of two-dimensional signal filtering to powder diffraction data has been
demonstrated. In the presented case study of FeSb2O4, high-pressure data have been analysed,
successfully identifying two new phases at non-ambient pressures. All applied filters have been
implemented in the freely available software Powder3D.
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